Trajectory Applications with Landsat

Todd A. Schroeder
Integrated Remote Sensing Studio
Department of Forest Resources Management
University of British Columbia

Objectives:

- Why trajectories?
- Two examples
 - 1. Post-harvest forest regrowth rates western OR
 - 2. Mt. Pine Beetle Infestation British Columbia

Why?

- Forest change is often a long term process which can be non-linear in nature.
- Multiple images are required to accurately characterize processes like time of disturbance, rate of regrowth and gradual mortality from insect infestation.
- Given long term record, Landsat is a logical choice for trajectory analysis.

3 advantages to using trajectories for vegetation change......

- 1. Spectral variations from atmosphere and phenology are minimized.
- 2. Trajectory curves can be statistically compared using longitudinal analysis.
- 3. Trajectories can be quantified through parameterization of the fitted mean curve (e.g., delay, time to canopy closure, maximum growth rate).
- Success hinges on successful radiometric calibration

Radiometric Calibration:

- "Absolute-normalization" approach Multivariate Alteration Detection (MAD)
- Based on CCA invariant to linear scaling (gain/bias, clouds)
- Equally accurate as band-wise regression with hand-selected PIFs
- Normalization most important step

• Schroeder et al., (2006). Radiometric calibration of Landsat data for characterization of early forest successional patterns in western Oregon. *Remote Sensing of Environment.* 103, 16-26.

Study Area:

Data Cube:

Sensor	Date
TM	8/26/1986
TM	7/12/1987
TM	8/31/1988
TM	9/3/1989
TM	7/7/1991
TM	8/10/1992
TM	8/29/1993
TM	7/31/1994
TM	8/19/1995
TM	8/21/1996
TM	7/23/1997
MT	8/11/1998
TM	8/16/2000
TM	8/25/2003
TM	7/26/2004
TM	7/29/2005
ETM+	8/22/1999
ETM+	7/26/2001
ETM+	7/29/2002

Forest Regrowth Modeling:

- 1. Image Normalization
- 2. Build Initial Regression Model % Tree Cover
- 3. Extrapolate initial model to normalized images
- 4. Temporal accuracy assessment Pl data
- Map clearcuts (3 periods)
- 6. Spatially group pixels that have similar trajectories (ISODATA Clustering)
- 7. Describe variation in regrowth trajectory classes using CART modeling

June 13, 2007 – Landsat Science Team meeting, Corvallis, OR

Forest Regrowth Maps:

- a. Rapid canopy closure c. Logging damage (landing)
- b. Hardwood competition d. Delayed succession

Significant Findings:

- Photointerpreted tree cover has unavoidable interpreter bias (especially in the 30-60% cover range).
- Date-invariant regression improves on post-classification comparison technique through use of robust radiometric calibration technique, use of continuous (as opposed to class based) variables, and basing change on trajectory classes.
- Observed (re-confirmed) variable rates of post-harvest forest succession in western OR
- Extended forest regrowth trajectories from PI space to Landsat spectral space.
- CART modeling yielded ecologically interpretable results.
- Confirmed importance of plant relevant predictor variables PRR.
 - Schroeder et al., (2007). Patterns of forest regrowth following clearcutting as determined from a Landsat time-series. Forest Ecology and Management.

Mountain Pine Beetle:

- Objective is to accurately map year of stand death, as well as better understand pre- and post-infestation forest characteristics.
- Data cube is required as Mt. pine beetle attack can vary from severe to gradual and is a multi-staged process (green vs. red attack).

